Effects of pregabalin on the activity of glutamate transporter type 3.
نویسندگان
چکیده
BACKGROUND Pregabalin, (S)-3-aminomethyl-5-methyl hexanoic acid, is a ligand for the α2δ subunit (a component of voltage-gated calcium channels) and has analgesic and anticonvulsant properties. Glutamate uptake by glutamate transporters may be a mechanism for these properties. We investigated the effects of pregabalin on the activity of the neuronal glutamate transporter type 3 (EAAT3). METHODS EAAT3 was expressed in Xenopus laevis oocytes. Two-electrode voltage clamping was used to record membrane currents before, during, and after applying l-glutamate (30 μM) in the presence or absence of pregabalin. Currents were also measured in oocytes pretreated with a protein kinase C (PKC) activator (phorbol-12-myristate-13-acetate, PMA), PKC inhibitors (chelerythrine or staurosporine), or a phosphatidylinositol-3-kinase (PI3K) inhibitor wortmannin. RESULTS The exposure of the oocytes injected with EAAT3 mRNA to serial concentrations of pregabalin (0.06-60 μM) significantly increased their responses to 30 μM l-glutamate. A kinetic study showed that pregabalin significantly increased V(max) without changing K(m). Treatment of oocytes with PMA, pregabalin, or pregabalin plus PMA significantly increased transporter currents vs controls, but treatment with PMA plus pregabalin did not increase the responses further vs PMA or pregabalin alone. In addition, pretreatment of oocytes with two PKC inhibitors (chelerythrine or staurosporine), or inhibitor wortmannin, significantly reduced basal and pregabalin-enhanced EAAT3 activity. CONCLUSIONS Pregabalin increased EAAT3 activity and PKC and PI3K were involved. This may explain the analgesic effect of pregabalin in neuropathic pain.
منابع مشابه
Evaluation of the efficacy and safety of pregabalin as an adjuvant to antipsychotics in patients with chronic schizophrenia: a six-week pilot double-blind placebo-controlled trial
Introduction and objectives: Antipsychotics or dopamine receptor antagonists are the major components of treatment but about 10-20% of patients with schizophrenia do not benefit from treatment with antidopaminergic agents, indicating other neuronal systems may be involved in this disorder (2). Dysregulation of both excitatory and inhibitory mechanisms N-Methyl-D-aspartic acid (NMDA) and γ-Amino...
متن کاملEffects of Parathion Toxin on Glutamate Dehydrogenase Enzyme Activity and Diabetes Induction
Introduction: The main propose of this study was to determine the effect of parathion on activity of glutamate dehydrogenase (GDH) as a key enzyme in second phase secretion of insulin and to determine serum glucose levels in rats. Methods: To conduct the study, 35 rats were randomly divided into five groups (n=7). The serum glucose level of each group was measured and the total average was ca...
متن کاملEffects of volatile anesthetics on glutamate transporter, excitatory amino acid transporter type 3: the role of protein kinase C.
BACKGROUND Glutamate transporters play an important role in maintaining extracellular glutamate homeostasis. The authors studied the effects of volatile anesthetics on one type of glutamate transporters, excitatory amino acid transporter type 3 (EAAT3), and the role of protein kinase C in mediating these effects. METHODS Excitatory amino acid transporter type 3 was expressed in Xenopus oocyte...
متن کاملInjury to skeletal muscle of mice following acute and sub-acute pregabalin exposure
Objective(s): Pregabalin (PGB) is a new antiepileptic drug that has received FDA approval for patient who suffers from central neuropathic pain, partial seizures, generalized anxiety disorder, fibromyalgia and sleep disorders. This study was undertaken to evaluate the possible adverse effects of PGB on the muscular system of mice. Materials and Methods: To evaluate the effect of PGB on skeletal...
متن کامل(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex
Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- British journal of anaesthesia
دوره 109 2 شماره
صفحات -
تاریخ انتشار 2012